Copied to
clipboard

G = C23⋊Dic14order 448 = 26·7

1st semidirect product of C23 and Dic14 acting via Dic14/C14=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.5D14, C231Dic14, (C2×C28).48D4, (C22×C14)⋊3Q8, C72(C23⋊Q8), C14.36C22≀C2, (C2×Dic7).53D4, C22.237(D4×D7), (C22×C4).27D14, C2.6(C23⋊D14), (C22×Dic14)⋊3C2, C14.55(C22⋊Q8), C14.C4228C2, C2.6(C28.48D4), C14.31(C4.4D4), C2.5(C28.17D4), C22.94(C4○D28), (C23×C14).30C22, (C22×C28).56C22, C22.44(C2×Dic14), C23.366(C22×D7), C22.92(D42D7), (C22×C14).322C23, C2.20(Dic7.D4), C2.20(C22⋊Dic14), (C22×Dic7).38C22, (C2×C14).32(C2×Q8), (C2×C14).316(C2×D4), (C2×C4).27(C7⋊D4), (C2×C22⋊C4).10D7, (C2×C23.D7).9C2, (C2×C14).76(C4○D4), (C14×C22⋊C4).12C2, C22.122(C2×C7⋊D4), SmallGroup(448,481)

Series: Derived Chief Lower central Upper central

C1C22×C14 — C23⋊Dic14
C1C7C14C2×C14C22×C14C22×Dic7C22×Dic14 — C23⋊Dic14
C7C22×C14 — C23⋊Dic14
C1C23C2×C22⋊C4

Generators and relations for C23⋊Dic14
 G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=d14, eae-1=ab=ba, dad-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 884 in 202 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, Q8, C23, C23, C23, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C22×Q8, Dic14, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C23⋊Q8, C23.D7, C7×C22⋊C4, C2×Dic14, C22×Dic7, C22×C28, C23×C14, C14.C42, C14.C42, C2×C23.D7, C14×C22⋊C4, C22×Dic14, C23⋊Dic14
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, D14, C22≀C2, C22⋊Q8, C4.4D4, Dic14, C7⋊D4, C22×D7, C23⋊Q8, C2×Dic14, C4○D28, D4×D7, D42D7, C2×C7⋊D4, C22⋊Dic14, Dic7.D4, C28.48D4, C28.17D4, C23⋊D14, C23⋊Dic14

Smallest permutation representation of C23⋊Dic14
On 224 points
Generators in S224
(2 164)(4 166)(6 168)(8 142)(10 144)(12 146)(14 148)(16 150)(18 152)(20 154)(22 156)(24 158)(26 160)(28 162)(29 179)(30 75)(31 181)(32 77)(33 183)(34 79)(35 185)(36 81)(37 187)(38 83)(39 189)(40 57)(41 191)(42 59)(43 193)(44 61)(45 195)(46 63)(47 169)(48 65)(49 171)(50 67)(51 173)(52 69)(53 175)(54 71)(55 177)(56 73)(58 138)(60 140)(62 114)(64 116)(66 118)(68 120)(70 122)(72 124)(74 126)(76 128)(78 130)(80 132)(82 134)(84 136)(86 203)(88 205)(90 207)(92 209)(94 211)(96 213)(98 215)(100 217)(102 219)(104 221)(106 223)(108 197)(110 199)(112 201)(113 194)(115 196)(117 170)(119 172)(121 174)(123 176)(125 178)(127 180)(129 182)(131 184)(133 186)(135 188)(137 190)(139 192)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 111)(22 112)(23 85)(24 86)(25 87)(26 88)(27 89)(28 90)(29 179)(30 180)(31 181)(32 182)(33 183)(34 184)(35 185)(36 186)(37 187)(38 188)(39 189)(40 190)(41 191)(42 192)(43 193)(44 194)(45 195)(46 196)(47 169)(48 170)(49 171)(50 172)(51 173)(52 174)(53 175)(54 176)(55 177)(56 178)(57 137)(58 138)(59 139)(60 140)(61 113)(62 114)(63 115)(64 116)(65 117)(66 118)(67 119)(68 120)(69 121)(70 122)(71 123)(72 124)(73 125)(74 126)(75 127)(76 128)(77 129)(78 130)(79 131)(80 132)(81 133)(82 134)(83 135)(84 136)(141 214)(142 215)(143 216)(144 217)(145 218)(146 219)(147 220)(148 221)(149 222)(150 223)(151 224)(152 197)(153 198)(154 199)(155 200)(156 201)(157 202)(158 203)(159 204)(160 205)(161 206)(162 207)(163 208)(164 209)(165 210)(166 211)(167 212)(168 213)
(1 163)(2 164)(3 165)(4 166)(5 167)(6 168)(7 141)(8 142)(9 143)(10 144)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 151)(18 152)(19 153)(20 154)(21 155)(22 156)(23 157)(24 158)(25 159)(26 160)(27 161)(28 162)(29 126)(30 127)(31 128)(32 129)(33 130)(34 131)(35 132)(36 133)(37 134)(38 135)(39 136)(40 137)(41 138)(42 139)(43 140)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 121)(53 122)(54 123)(55 124)(56 125)(57 190)(58 191)(59 192)(60 193)(61 194)(62 195)(63 196)(64 169)(65 170)(66 171)(67 172)(68 173)(69 174)(70 175)(71 176)(72 177)(73 178)(74 179)(75 180)(76 181)(77 182)(78 183)(79 184)(80 185)(81 186)(82 187)(83 188)(84 189)(85 202)(86 203)(87 204)(88 205)(89 206)(90 207)(91 208)(92 209)(93 210)(94 211)(95 212)(96 213)(97 214)(98 215)(99 216)(100 217)(101 218)(102 219)(103 220)(104 221)(105 222)(106 223)(107 224)(108 197)(109 198)(110 199)(111 200)(112 201)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 128 15 114)(2 127 16 113)(3 126 17 140)(4 125 18 139)(5 124 19 138)(6 123 20 137)(7 122 21 136)(8 121 22 135)(9 120 23 134)(10 119 24 133)(11 118 25 132)(12 117 26 131)(13 116 27 130)(14 115 28 129)(29 151 43 165)(30 150 44 164)(31 149 45 163)(32 148 46 162)(33 147 47 161)(34 146 48 160)(35 145 49 159)(36 144 50 158)(37 143 51 157)(38 142 52 156)(39 141 53 155)(40 168 54 154)(41 167 55 153)(42 166 56 152)(57 96 71 110)(58 95 72 109)(59 94 73 108)(60 93 74 107)(61 92 75 106)(62 91 76 105)(63 90 77 104)(64 89 78 103)(65 88 79 102)(66 87 80 101)(67 86 81 100)(68 85 82 99)(69 112 83 98)(70 111 84 97)(169 206 183 220)(170 205 184 219)(171 204 185 218)(172 203 186 217)(173 202 187 216)(174 201 188 215)(175 200 189 214)(176 199 190 213)(177 198 191 212)(178 197 192 211)(179 224 193 210)(180 223 194 209)(181 222 195 208)(182 221 196 207)

G:=sub<Sym(224)| (2,164)(4,166)(6,168)(8,142)(10,144)(12,146)(14,148)(16,150)(18,152)(20,154)(22,156)(24,158)(26,160)(28,162)(29,179)(30,75)(31,181)(32,77)(33,183)(34,79)(35,185)(36,81)(37,187)(38,83)(39,189)(40,57)(41,191)(42,59)(43,193)(44,61)(45,195)(46,63)(47,169)(48,65)(49,171)(50,67)(51,173)(52,69)(53,175)(54,71)(55,177)(56,73)(58,138)(60,140)(62,114)(64,116)(66,118)(68,120)(70,122)(72,124)(74,126)(76,128)(78,130)(80,132)(82,134)(84,136)(86,203)(88,205)(90,207)(92,209)(94,211)(96,213)(98,215)(100,217)(102,219)(104,221)(106,223)(108,197)(110,199)(112,201)(113,194)(115,196)(117,170)(119,172)(121,174)(123,176)(125,178)(127,180)(129,182)(131,184)(133,186)(135,188)(137,190)(139,192), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,179)(30,180)(31,181)(32,182)(33,183)(34,184)(35,185)(36,186)(37,187)(38,188)(39,189)(40,190)(41,191)(42,192)(43,193)(44,194)(45,195)(46,196)(47,169)(48,170)(49,171)(50,172)(51,173)(52,174)(53,175)(54,176)(55,177)(56,178)(57,137)(58,138)(59,139)(60,140)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132)(81,133)(82,134)(83,135)(84,136)(141,214)(142,215)(143,216)(144,217)(145,218)(146,219)(147,220)(148,221)(149,222)(150,223)(151,224)(152,197)(153,198)(154,199)(155,200)(156,201)(157,202)(158,203)(159,204)(160,205)(161,206)(162,207)(163,208)(164,209)(165,210)(166,211)(167,212)(168,213), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,140)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,209)(93,210)(94,211)(95,212)(96,213)(97,214)(98,215)(99,216)(100,217)(101,218)(102,219)(103,220)(104,221)(105,222)(106,223)(107,224)(108,197)(109,198)(110,199)(111,200)(112,201), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,128,15,114)(2,127,16,113)(3,126,17,140)(4,125,18,139)(5,124,19,138)(6,123,20,137)(7,122,21,136)(8,121,22,135)(9,120,23,134)(10,119,24,133)(11,118,25,132)(12,117,26,131)(13,116,27,130)(14,115,28,129)(29,151,43,165)(30,150,44,164)(31,149,45,163)(32,148,46,162)(33,147,47,161)(34,146,48,160)(35,145,49,159)(36,144,50,158)(37,143,51,157)(38,142,52,156)(39,141,53,155)(40,168,54,154)(41,167,55,153)(42,166,56,152)(57,96,71,110)(58,95,72,109)(59,94,73,108)(60,93,74,107)(61,92,75,106)(62,91,76,105)(63,90,77,104)(64,89,78,103)(65,88,79,102)(66,87,80,101)(67,86,81,100)(68,85,82,99)(69,112,83,98)(70,111,84,97)(169,206,183,220)(170,205,184,219)(171,204,185,218)(172,203,186,217)(173,202,187,216)(174,201,188,215)(175,200,189,214)(176,199,190,213)(177,198,191,212)(178,197,192,211)(179,224,193,210)(180,223,194,209)(181,222,195,208)(182,221,196,207)>;

G:=Group( (2,164)(4,166)(6,168)(8,142)(10,144)(12,146)(14,148)(16,150)(18,152)(20,154)(22,156)(24,158)(26,160)(28,162)(29,179)(30,75)(31,181)(32,77)(33,183)(34,79)(35,185)(36,81)(37,187)(38,83)(39,189)(40,57)(41,191)(42,59)(43,193)(44,61)(45,195)(46,63)(47,169)(48,65)(49,171)(50,67)(51,173)(52,69)(53,175)(54,71)(55,177)(56,73)(58,138)(60,140)(62,114)(64,116)(66,118)(68,120)(70,122)(72,124)(74,126)(76,128)(78,130)(80,132)(82,134)(84,136)(86,203)(88,205)(90,207)(92,209)(94,211)(96,213)(98,215)(100,217)(102,219)(104,221)(106,223)(108,197)(110,199)(112,201)(113,194)(115,196)(117,170)(119,172)(121,174)(123,176)(125,178)(127,180)(129,182)(131,184)(133,186)(135,188)(137,190)(139,192), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,179)(30,180)(31,181)(32,182)(33,183)(34,184)(35,185)(36,186)(37,187)(38,188)(39,189)(40,190)(41,191)(42,192)(43,193)(44,194)(45,195)(46,196)(47,169)(48,170)(49,171)(50,172)(51,173)(52,174)(53,175)(54,176)(55,177)(56,178)(57,137)(58,138)(59,139)(60,140)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132)(81,133)(82,134)(83,135)(84,136)(141,214)(142,215)(143,216)(144,217)(145,218)(146,219)(147,220)(148,221)(149,222)(150,223)(151,224)(152,197)(153,198)(154,199)(155,200)(156,201)(157,202)(158,203)(159,204)(160,205)(161,206)(162,207)(163,208)(164,209)(165,210)(166,211)(167,212)(168,213), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,140)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,209)(93,210)(94,211)(95,212)(96,213)(97,214)(98,215)(99,216)(100,217)(101,218)(102,219)(103,220)(104,221)(105,222)(106,223)(107,224)(108,197)(109,198)(110,199)(111,200)(112,201), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,128,15,114)(2,127,16,113)(3,126,17,140)(4,125,18,139)(5,124,19,138)(6,123,20,137)(7,122,21,136)(8,121,22,135)(9,120,23,134)(10,119,24,133)(11,118,25,132)(12,117,26,131)(13,116,27,130)(14,115,28,129)(29,151,43,165)(30,150,44,164)(31,149,45,163)(32,148,46,162)(33,147,47,161)(34,146,48,160)(35,145,49,159)(36,144,50,158)(37,143,51,157)(38,142,52,156)(39,141,53,155)(40,168,54,154)(41,167,55,153)(42,166,56,152)(57,96,71,110)(58,95,72,109)(59,94,73,108)(60,93,74,107)(61,92,75,106)(62,91,76,105)(63,90,77,104)(64,89,78,103)(65,88,79,102)(66,87,80,101)(67,86,81,100)(68,85,82,99)(69,112,83,98)(70,111,84,97)(169,206,183,220)(170,205,184,219)(171,204,185,218)(172,203,186,217)(173,202,187,216)(174,201,188,215)(175,200,189,214)(176,199,190,213)(177,198,191,212)(178,197,192,211)(179,224,193,210)(180,223,194,209)(181,222,195,208)(182,221,196,207) );

G=PermutationGroup([[(2,164),(4,166),(6,168),(8,142),(10,144),(12,146),(14,148),(16,150),(18,152),(20,154),(22,156),(24,158),(26,160),(28,162),(29,179),(30,75),(31,181),(32,77),(33,183),(34,79),(35,185),(36,81),(37,187),(38,83),(39,189),(40,57),(41,191),(42,59),(43,193),(44,61),(45,195),(46,63),(47,169),(48,65),(49,171),(50,67),(51,173),(52,69),(53,175),(54,71),(55,177),(56,73),(58,138),(60,140),(62,114),(64,116),(66,118),(68,120),(70,122),(72,124),(74,126),(76,128),(78,130),(80,132),(82,134),(84,136),(86,203),(88,205),(90,207),(92,209),(94,211),(96,213),(98,215),(100,217),(102,219),(104,221),(106,223),(108,197),(110,199),(112,201),(113,194),(115,196),(117,170),(119,172),(121,174),(123,176),(125,178),(127,180),(129,182),(131,184),(133,186),(135,188),(137,190),(139,192)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,111),(22,112),(23,85),(24,86),(25,87),(26,88),(27,89),(28,90),(29,179),(30,180),(31,181),(32,182),(33,183),(34,184),(35,185),(36,186),(37,187),(38,188),(39,189),(40,190),(41,191),(42,192),(43,193),(44,194),(45,195),(46,196),(47,169),(48,170),(49,171),(50,172),(51,173),(52,174),(53,175),(54,176),(55,177),(56,178),(57,137),(58,138),(59,139),(60,140),(61,113),(62,114),(63,115),(64,116),(65,117),(66,118),(67,119),(68,120),(69,121),(70,122),(71,123),(72,124),(73,125),(74,126),(75,127),(76,128),(77,129),(78,130),(79,131),(80,132),(81,133),(82,134),(83,135),(84,136),(141,214),(142,215),(143,216),(144,217),(145,218),(146,219),(147,220),(148,221),(149,222),(150,223),(151,224),(152,197),(153,198),(154,199),(155,200),(156,201),(157,202),(158,203),(159,204),(160,205),(161,206),(162,207),(163,208),(164,209),(165,210),(166,211),(167,212),(168,213)], [(1,163),(2,164),(3,165),(4,166),(5,167),(6,168),(7,141),(8,142),(9,143),(10,144),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,151),(18,152),(19,153),(20,154),(21,155),(22,156),(23,157),(24,158),(25,159),(26,160),(27,161),(28,162),(29,126),(30,127),(31,128),(32,129),(33,130),(34,131),(35,132),(36,133),(37,134),(38,135),(39,136),(40,137),(41,138),(42,139),(43,140),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,121),(53,122),(54,123),(55,124),(56,125),(57,190),(58,191),(59,192),(60,193),(61,194),(62,195),(63,196),(64,169),(65,170),(66,171),(67,172),(68,173),(69,174),(70,175),(71,176),(72,177),(73,178),(74,179),(75,180),(76,181),(77,182),(78,183),(79,184),(80,185),(81,186),(82,187),(83,188),(84,189),(85,202),(86,203),(87,204),(88,205),(89,206),(90,207),(91,208),(92,209),(93,210),(94,211),(95,212),(96,213),(97,214),(98,215),(99,216),(100,217),(101,218),(102,219),(103,220),(104,221),(105,222),(106,223),(107,224),(108,197),(109,198),(110,199),(111,200),(112,201)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,128,15,114),(2,127,16,113),(3,126,17,140),(4,125,18,139),(5,124,19,138),(6,123,20,137),(7,122,21,136),(8,121,22,135),(9,120,23,134),(10,119,24,133),(11,118,25,132),(12,117,26,131),(13,116,27,130),(14,115,28,129),(29,151,43,165),(30,150,44,164),(31,149,45,163),(32,148,46,162),(33,147,47,161),(34,146,48,160),(35,145,49,159),(36,144,50,158),(37,143,51,157),(38,142,52,156),(39,141,53,155),(40,168,54,154),(41,167,55,153),(42,166,56,152),(57,96,71,110),(58,95,72,109),(59,94,73,108),(60,93,74,107),(61,92,75,106),(62,91,76,105),(63,90,77,104),(64,89,78,103),(65,88,79,102),(66,87,80,101),(67,86,81,100),(68,85,82,99),(69,112,83,98),(70,111,84,97),(169,206,183,220),(170,205,184,219),(171,204,185,218),(172,203,186,217),(173,202,187,216),(174,201,188,215),(175,200,189,214),(176,199,190,213),(177,198,191,212),(178,197,192,211),(179,224,193,210),(180,223,194,209),(181,222,195,208),(182,221,196,207)]])

82 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E···4L7A7B7C14A···14U14V···14AG28A···28X
order12···22244444···477714···1414···1428···28
size11···144444428···282222···24···44···4

82 irreducible representations

dim11111222222222244
type+++++++-+++-+-
imageC1C2C2C2C2D4D4Q8D7C4○D4D14D14C7⋊D4Dic14C4○D28D4×D7D42D7
kernelC23⋊Dic14C14.C42C2×C23.D7C14×C22⋊C4C22×Dic14C2×Dic7C2×C28C22×C14C2×C22⋊C4C2×C14C22×C4C24C2×C4C23C22C22C22
# reps13211422366312121266

Matrix representation of C23⋊Dic14 in GL6(𝔽29)

100000
28280000
001000
00162800
000010
00001128
,
100000
010000
0028000
0002800
0000280
0000028
,
2800000
0280000
001000
000100
000010
000001
,
28270000
110000
0016000
00262000
0000140
0000127
,
1700000
12120000
00162700
00261300
0000273
000082

G:=sub<GL(6,GF(29))| [1,28,0,0,0,0,0,28,0,0,0,0,0,0,1,16,0,0,0,0,0,28,0,0,0,0,0,0,1,11,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[28,1,0,0,0,0,27,1,0,0,0,0,0,0,16,26,0,0,0,0,0,20,0,0,0,0,0,0,14,1,0,0,0,0,0,27],[17,12,0,0,0,0,0,12,0,0,0,0,0,0,16,26,0,0,0,0,27,13,0,0,0,0,0,0,27,8,0,0,0,0,3,2] >;

C23⋊Dic14 in GAP, Magma, Sage, TeX

C_2^3\rtimes {\rm Dic}_{14}
% in TeX

G:=Group("C2^3:Dic14");
// GroupNames label

G:=SmallGroup(448,481);
// by ID

G=gap.SmallGroup(448,481);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,253,120,254,387,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=d^14,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽