metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.5D14, C23⋊1Dic14, (C2×C28).48D4, (C22×C14)⋊3Q8, C7⋊2(C23⋊Q8), C14.36C22≀C2, (C2×Dic7).53D4, C22.237(D4×D7), (C22×C4).27D14, C2.6(C23⋊D14), (C22×Dic14)⋊3C2, C14.55(C22⋊Q8), C14.C42⋊28C2, C2.6(C28.48D4), C14.31(C4.4D4), C2.5(C28.17D4), C22.94(C4○D28), (C23×C14).30C22, (C22×C28).56C22, C22.44(C2×Dic14), C23.366(C22×D7), C22.92(D4⋊2D7), (C22×C14).322C23, C2.20(Dic7.D4), C2.20(C22⋊Dic14), (C22×Dic7).38C22, (C2×C14).32(C2×Q8), (C2×C14).316(C2×D4), (C2×C4).27(C7⋊D4), (C2×C22⋊C4).10D7, (C2×C23.D7).9C2, (C2×C14).76(C4○D4), (C14×C22⋊C4).12C2, C22.122(C2×C7⋊D4), SmallGroup(448,481)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23⋊Dic14
G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=d14, eae-1=ab=ba, dad-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 884 in 202 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, Q8, C23, C23, C23, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C22×Q8, Dic14, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C23⋊Q8, C23.D7, C7×C22⋊C4, C2×Dic14, C22×Dic7, C22×C28, C23×C14, C14.C42, C14.C42, C2×C23.D7, C14×C22⋊C4, C22×Dic14, C23⋊Dic14
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, D14, C22≀C2, C22⋊Q8, C4.4D4, Dic14, C7⋊D4, C22×D7, C23⋊Q8, C2×Dic14, C4○D28, D4×D7, D4⋊2D7, C2×C7⋊D4, C22⋊Dic14, Dic7.D4, C28.48D4, C28.17D4, C23⋊D14, C23⋊Dic14
(2 164)(4 166)(6 168)(8 142)(10 144)(12 146)(14 148)(16 150)(18 152)(20 154)(22 156)(24 158)(26 160)(28 162)(29 179)(30 75)(31 181)(32 77)(33 183)(34 79)(35 185)(36 81)(37 187)(38 83)(39 189)(40 57)(41 191)(42 59)(43 193)(44 61)(45 195)(46 63)(47 169)(48 65)(49 171)(50 67)(51 173)(52 69)(53 175)(54 71)(55 177)(56 73)(58 138)(60 140)(62 114)(64 116)(66 118)(68 120)(70 122)(72 124)(74 126)(76 128)(78 130)(80 132)(82 134)(84 136)(86 203)(88 205)(90 207)(92 209)(94 211)(96 213)(98 215)(100 217)(102 219)(104 221)(106 223)(108 197)(110 199)(112 201)(113 194)(115 196)(117 170)(119 172)(121 174)(123 176)(125 178)(127 180)(129 182)(131 184)(133 186)(135 188)(137 190)(139 192)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 111)(22 112)(23 85)(24 86)(25 87)(26 88)(27 89)(28 90)(29 179)(30 180)(31 181)(32 182)(33 183)(34 184)(35 185)(36 186)(37 187)(38 188)(39 189)(40 190)(41 191)(42 192)(43 193)(44 194)(45 195)(46 196)(47 169)(48 170)(49 171)(50 172)(51 173)(52 174)(53 175)(54 176)(55 177)(56 178)(57 137)(58 138)(59 139)(60 140)(61 113)(62 114)(63 115)(64 116)(65 117)(66 118)(67 119)(68 120)(69 121)(70 122)(71 123)(72 124)(73 125)(74 126)(75 127)(76 128)(77 129)(78 130)(79 131)(80 132)(81 133)(82 134)(83 135)(84 136)(141 214)(142 215)(143 216)(144 217)(145 218)(146 219)(147 220)(148 221)(149 222)(150 223)(151 224)(152 197)(153 198)(154 199)(155 200)(156 201)(157 202)(158 203)(159 204)(160 205)(161 206)(162 207)(163 208)(164 209)(165 210)(166 211)(167 212)(168 213)
(1 163)(2 164)(3 165)(4 166)(5 167)(6 168)(7 141)(8 142)(9 143)(10 144)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 151)(18 152)(19 153)(20 154)(21 155)(22 156)(23 157)(24 158)(25 159)(26 160)(27 161)(28 162)(29 126)(30 127)(31 128)(32 129)(33 130)(34 131)(35 132)(36 133)(37 134)(38 135)(39 136)(40 137)(41 138)(42 139)(43 140)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 121)(53 122)(54 123)(55 124)(56 125)(57 190)(58 191)(59 192)(60 193)(61 194)(62 195)(63 196)(64 169)(65 170)(66 171)(67 172)(68 173)(69 174)(70 175)(71 176)(72 177)(73 178)(74 179)(75 180)(76 181)(77 182)(78 183)(79 184)(80 185)(81 186)(82 187)(83 188)(84 189)(85 202)(86 203)(87 204)(88 205)(89 206)(90 207)(91 208)(92 209)(93 210)(94 211)(95 212)(96 213)(97 214)(98 215)(99 216)(100 217)(101 218)(102 219)(103 220)(104 221)(105 222)(106 223)(107 224)(108 197)(109 198)(110 199)(111 200)(112 201)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 128 15 114)(2 127 16 113)(3 126 17 140)(4 125 18 139)(5 124 19 138)(6 123 20 137)(7 122 21 136)(8 121 22 135)(9 120 23 134)(10 119 24 133)(11 118 25 132)(12 117 26 131)(13 116 27 130)(14 115 28 129)(29 151 43 165)(30 150 44 164)(31 149 45 163)(32 148 46 162)(33 147 47 161)(34 146 48 160)(35 145 49 159)(36 144 50 158)(37 143 51 157)(38 142 52 156)(39 141 53 155)(40 168 54 154)(41 167 55 153)(42 166 56 152)(57 96 71 110)(58 95 72 109)(59 94 73 108)(60 93 74 107)(61 92 75 106)(62 91 76 105)(63 90 77 104)(64 89 78 103)(65 88 79 102)(66 87 80 101)(67 86 81 100)(68 85 82 99)(69 112 83 98)(70 111 84 97)(169 206 183 220)(170 205 184 219)(171 204 185 218)(172 203 186 217)(173 202 187 216)(174 201 188 215)(175 200 189 214)(176 199 190 213)(177 198 191 212)(178 197 192 211)(179 224 193 210)(180 223 194 209)(181 222 195 208)(182 221 196 207)
G:=sub<Sym(224)| (2,164)(4,166)(6,168)(8,142)(10,144)(12,146)(14,148)(16,150)(18,152)(20,154)(22,156)(24,158)(26,160)(28,162)(29,179)(30,75)(31,181)(32,77)(33,183)(34,79)(35,185)(36,81)(37,187)(38,83)(39,189)(40,57)(41,191)(42,59)(43,193)(44,61)(45,195)(46,63)(47,169)(48,65)(49,171)(50,67)(51,173)(52,69)(53,175)(54,71)(55,177)(56,73)(58,138)(60,140)(62,114)(64,116)(66,118)(68,120)(70,122)(72,124)(74,126)(76,128)(78,130)(80,132)(82,134)(84,136)(86,203)(88,205)(90,207)(92,209)(94,211)(96,213)(98,215)(100,217)(102,219)(104,221)(106,223)(108,197)(110,199)(112,201)(113,194)(115,196)(117,170)(119,172)(121,174)(123,176)(125,178)(127,180)(129,182)(131,184)(133,186)(135,188)(137,190)(139,192), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,179)(30,180)(31,181)(32,182)(33,183)(34,184)(35,185)(36,186)(37,187)(38,188)(39,189)(40,190)(41,191)(42,192)(43,193)(44,194)(45,195)(46,196)(47,169)(48,170)(49,171)(50,172)(51,173)(52,174)(53,175)(54,176)(55,177)(56,178)(57,137)(58,138)(59,139)(60,140)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132)(81,133)(82,134)(83,135)(84,136)(141,214)(142,215)(143,216)(144,217)(145,218)(146,219)(147,220)(148,221)(149,222)(150,223)(151,224)(152,197)(153,198)(154,199)(155,200)(156,201)(157,202)(158,203)(159,204)(160,205)(161,206)(162,207)(163,208)(164,209)(165,210)(166,211)(167,212)(168,213), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,140)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,209)(93,210)(94,211)(95,212)(96,213)(97,214)(98,215)(99,216)(100,217)(101,218)(102,219)(103,220)(104,221)(105,222)(106,223)(107,224)(108,197)(109,198)(110,199)(111,200)(112,201), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,128,15,114)(2,127,16,113)(3,126,17,140)(4,125,18,139)(5,124,19,138)(6,123,20,137)(7,122,21,136)(8,121,22,135)(9,120,23,134)(10,119,24,133)(11,118,25,132)(12,117,26,131)(13,116,27,130)(14,115,28,129)(29,151,43,165)(30,150,44,164)(31,149,45,163)(32,148,46,162)(33,147,47,161)(34,146,48,160)(35,145,49,159)(36,144,50,158)(37,143,51,157)(38,142,52,156)(39,141,53,155)(40,168,54,154)(41,167,55,153)(42,166,56,152)(57,96,71,110)(58,95,72,109)(59,94,73,108)(60,93,74,107)(61,92,75,106)(62,91,76,105)(63,90,77,104)(64,89,78,103)(65,88,79,102)(66,87,80,101)(67,86,81,100)(68,85,82,99)(69,112,83,98)(70,111,84,97)(169,206,183,220)(170,205,184,219)(171,204,185,218)(172,203,186,217)(173,202,187,216)(174,201,188,215)(175,200,189,214)(176,199,190,213)(177,198,191,212)(178,197,192,211)(179,224,193,210)(180,223,194,209)(181,222,195,208)(182,221,196,207)>;
G:=Group( (2,164)(4,166)(6,168)(8,142)(10,144)(12,146)(14,148)(16,150)(18,152)(20,154)(22,156)(24,158)(26,160)(28,162)(29,179)(30,75)(31,181)(32,77)(33,183)(34,79)(35,185)(36,81)(37,187)(38,83)(39,189)(40,57)(41,191)(42,59)(43,193)(44,61)(45,195)(46,63)(47,169)(48,65)(49,171)(50,67)(51,173)(52,69)(53,175)(54,71)(55,177)(56,73)(58,138)(60,140)(62,114)(64,116)(66,118)(68,120)(70,122)(72,124)(74,126)(76,128)(78,130)(80,132)(82,134)(84,136)(86,203)(88,205)(90,207)(92,209)(94,211)(96,213)(98,215)(100,217)(102,219)(104,221)(106,223)(108,197)(110,199)(112,201)(113,194)(115,196)(117,170)(119,172)(121,174)(123,176)(125,178)(127,180)(129,182)(131,184)(133,186)(135,188)(137,190)(139,192), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,179)(30,180)(31,181)(32,182)(33,183)(34,184)(35,185)(36,186)(37,187)(38,188)(39,189)(40,190)(41,191)(42,192)(43,193)(44,194)(45,195)(46,196)(47,169)(48,170)(49,171)(50,172)(51,173)(52,174)(53,175)(54,176)(55,177)(56,178)(57,137)(58,138)(59,139)(60,140)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132)(81,133)(82,134)(83,135)(84,136)(141,214)(142,215)(143,216)(144,217)(145,218)(146,219)(147,220)(148,221)(149,222)(150,223)(151,224)(152,197)(153,198)(154,199)(155,200)(156,201)(157,202)(158,203)(159,204)(160,205)(161,206)(162,207)(163,208)(164,209)(165,210)(166,211)(167,212)(168,213), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,140)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,209)(93,210)(94,211)(95,212)(96,213)(97,214)(98,215)(99,216)(100,217)(101,218)(102,219)(103,220)(104,221)(105,222)(106,223)(107,224)(108,197)(109,198)(110,199)(111,200)(112,201), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,128,15,114)(2,127,16,113)(3,126,17,140)(4,125,18,139)(5,124,19,138)(6,123,20,137)(7,122,21,136)(8,121,22,135)(9,120,23,134)(10,119,24,133)(11,118,25,132)(12,117,26,131)(13,116,27,130)(14,115,28,129)(29,151,43,165)(30,150,44,164)(31,149,45,163)(32,148,46,162)(33,147,47,161)(34,146,48,160)(35,145,49,159)(36,144,50,158)(37,143,51,157)(38,142,52,156)(39,141,53,155)(40,168,54,154)(41,167,55,153)(42,166,56,152)(57,96,71,110)(58,95,72,109)(59,94,73,108)(60,93,74,107)(61,92,75,106)(62,91,76,105)(63,90,77,104)(64,89,78,103)(65,88,79,102)(66,87,80,101)(67,86,81,100)(68,85,82,99)(69,112,83,98)(70,111,84,97)(169,206,183,220)(170,205,184,219)(171,204,185,218)(172,203,186,217)(173,202,187,216)(174,201,188,215)(175,200,189,214)(176,199,190,213)(177,198,191,212)(178,197,192,211)(179,224,193,210)(180,223,194,209)(181,222,195,208)(182,221,196,207) );
G=PermutationGroup([[(2,164),(4,166),(6,168),(8,142),(10,144),(12,146),(14,148),(16,150),(18,152),(20,154),(22,156),(24,158),(26,160),(28,162),(29,179),(30,75),(31,181),(32,77),(33,183),(34,79),(35,185),(36,81),(37,187),(38,83),(39,189),(40,57),(41,191),(42,59),(43,193),(44,61),(45,195),(46,63),(47,169),(48,65),(49,171),(50,67),(51,173),(52,69),(53,175),(54,71),(55,177),(56,73),(58,138),(60,140),(62,114),(64,116),(66,118),(68,120),(70,122),(72,124),(74,126),(76,128),(78,130),(80,132),(82,134),(84,136),(86,203),(88,205),(90,207),(92,209),(94,211),(96,213),(98,215),(100,217),(102,219),(104,221),(106,223),(108,197),(110,199),(112,201),(113,194),(115,196),(117,170),(119,172),(121,174),(123,176),(125,178),(127,180),(129,182),(131,184),(133,186),(135,188),(137,190),(139,192)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,111),(22,112),(23,85),(24,86),(25,87),(26,88),(27,89),(28,90),(29,179),(30,180),(31,181),(32,182),(33,183),(34,184),(35,185),(36,186),(37,187),(38,188),(39,189),(40,190),(41,191),(42,192),(43,193),(44,194),(45,195),(46,196),(47,169),(48,170),(49,171),(50,172),(51,173),(52,174),(53,175),(54,176),(55,177),(56,178),(57,137),(58,138),(59,139),(60,140),(61,113),(62,114),(63,115),(64,116),(65,117),(66,118),(67,119),(68,120),(69,121),(70,122),(71,123),(72,124),(73,125),(74,126),(75,127),(76,128),(77,129),(78,130),(79,131),(80,132),(81,133),(82,134),(83,135),(84,136),(141,214),(142,215),(143,216),(144,217),(145,218),(146,219),(147,220),(148,221),(149,222),(150,223),(151,224),(152,197),(153,198),(154,199),(155,200),(156,201),(157,202),(158,203),(159,204),(160,205),(161,206),(162,207),(163,208),(164,209),(165,210),(166,211),(167,212),(168,213)], [(1,163),(2,164),(3,165),(4,166),(5,167),(6,168),(7,141),(8,142),(9,143),(10,144),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,151),(18,152),(19,153),(20,154),(21,155),(22,156),(23,157),(24,158),(25,159),(26,160),(27,161),(28,162),(29,126),(30,127),(31,128),(32,129),(33,130),(34,131),(35,132),(36,133),(37,134),(38,135),(39,136),(40,137),(41,138),(42,139),(43,140),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,121),(53,122),(54,123),(55,124),(56,125),(57,190),(58,191),(59,192),(60,193),(61,194),(62,195),(63,196),(64,169),(65,170),(66,171),(67,172),(68,173),(69,174),(70,175),(71,176),(72,177),(73,178),(74,179),(75,180),(76,181),(77,182),(78,183),(79,184),(80,185),(81,186),(82,187),(83,188),(84,189),(85,202),(86,203),(87,204),(88,205),(89,206),(90,207),(91,208),(92,209),(93,210),(94,211),(95,212),(96,213),(97,214),(98,215),(99,216),(100,217),(101,218),(102,219),(103,220),(104,221),(105,222),(106,223),(107,224),(108,197),(109,198),(110,199),(111,200),(112,201)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,128,15,114),(2,127,16,113),(3,126,17,140),(4,125,18,139),(5,124,19,138),(6,123,20,137),(7,122,21,136),(8,121,22,135),(9,120,23,134),(10,119,24,133),(11,118,25,132),(12,117,26,131),(13,116,27,130),(14,115,28,129),(29,151,43,165),(30,150,44,164),(31,149,45,163),(32,148,46,162),(33,147,47,161),(34,146,48,160),(35,145,49,159),(36,144,50,158),(37,143,51,157),(38,142,52,156),(39,141,53,155),(40,168,54,154),(41,167,55,153),(42,166,56,152),(57,96,71,110),(58,95,72,109),(59,94,73,108),(60,93,74,107),(61,92,75,106),(62,91,76,105),(63,90,77,104),(64,89,78,103),(65,88,79,102),(66,87,80,101),(67,86,81,100),(68,85,82,99),(69,112,83,98),(70,111,84,97),(169,206,183,220),(170,205,184,219),(171,204,185,218),(172,203,186,217),(173,202,187,216),(174,201,188,215),(175,200,189,214),(176,199,190,213),(177,198,191,212),(178,197,192,211),(179,224,193,210),(180,223,194,209),(181,222,195,208),(182,221,196,207)]])
82 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | Q8 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | Dic14 | C4○D28 | D4×D7 | D4⋊2D7 |
kernel | C23⋊Dic14 | C14.C42 | C2×C23.D7 | C14×C22⋊C4 | C22×Dic14 | C2×Dic7 | C2×C28 | C22×C14 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 3 | 2 | 1 | 1 | 4 | 2 | 2 | 3 | 6 | 6 | 3 | 12 | 12 | 12 | 6 | 6 |
Matrix representation of C23⋊Dic14 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
28 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 11 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
28 | 27 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 26 | 20 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 0 |
0 | 0 | 0 | 0 | 1 | 27 |
17 | 0 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 27 | 0 | 0 |
0 | 0 | 26 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 3 |
0 | 0 | 0 | 0 | 8 | 2 |
G:=sub<GL(6,GF(29))| [1,28,0,0,0,0,0,28,0,0,0,0,0,0,1,16,0,0,0,0,0,28,0,0,0,0,0,0,1,11,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[28,1,0,0,0,0,27,1,0,0,0,0,0,0,16,26,0,0,0,0,0,20,0,0,0,0,0,0,14,1,0,0,0,0,0,27],[17,12,0,0,0,0,0,12,0,0,0,0,0,0,16,26,0,0,0,0,27,13,0,0,0,0,0,0,27,8,0,0,0,0,3,2] >;
C23⋊Dic14 in GAP, Magma, Sage, TeX
C_2^3\rtimes {\rm Dic}_{14}
% in TeX
G:=Group("C2^3:Dic14");
// GroupNames label
G:=SmallGroup(448,481);
// by ID
G=gap.SmallGroup(448,481);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,253,120,254,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=d^14,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations